135 research outputs found

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing

    Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration

    Get PDF
    The microbiome associated with plants used in phytodepuration systems can boost plant growth and services, especially in ecosystems dealing with recalcitrant compounds, hardly removed via traditional wastewater (WW) treatments, such as azo-dyes used in textile industry. In this context, we aimed to study the cultivable microbiome selected by Phragmites australis plants in a Constructed Wetland (CW) in Morocco, in order to obtain candidate inoculants for the phytodepuration of azo-dye contaminated WW. A collection of 152 rhizospheric and endophytic bacteria was established. The strains were phylogenetically identified and characterized for traits of interest in the phytodepuration context. All strains showed Plant Growth Promotion potential in vitro and 67% of them significantly improved the growth of a model plant in vivo compared to the non bacterized control plants. Moreover, most of the isolates were able to grow in presence of several model micropollutants typically found in WW, indicating their potential use in phytodepuration of a wide spectrum of effluents. The six most promising strains of the collection were tested in CW microcosms alone or as consortium: the consortium and two single inocula demonstrated to significantly increase the removal of the model azo-dye Reactive Black 5 compared to the non bacterized controls

    Spectral-based mesh segmentation

    Get PDF
    In design and manufacturing, mesh segmentation is required for FACE construction in boundary representation (BRep), which in turn is central for featurebased design, machining, parametric CAD and reverse engineering, among others -- Although mesh segmentation is dictated by geometry and topology, this article focuses on the topological aspect (graph spectrum), as we consider that this tool has not been fully exploited -- We preprocess the mesh to obtain a edgelength homogeneous triangle set and its Graph Laplacian is calculated -- We then produce a monotonically increasing permutation of the Fiedler vector (2nd eigenvector of Graph Laplacian) for encoding the connectivity among part feature submeshes -- Within the mutated vector, discontinuities larger than a threshold (interactively set by a human) determine the partition of the original mesh -- We present tests of our method on large complex meshes, which show results which mostly adjust to BRep FACE partition -- The achieved segmentations properly locate most manufacturing features, although it requires human interaction to avoid over segmentation -- Future work includes an iterative application of this algorithm to progressively sever features of the mesh left from previous submesh removal

    3D visualization processes for recreating and studying organismal form

    Get PDF
    The study of biological form is a vital goal of evolutionary biology and functional morphology. We review an emerging set of methods that allow scientists to create and study accurate 3D models of living organisms and animate those models for biomechanical and fluid dynamic analyses. The methods for creating such models include 3D photogrammetry, laser and CT-scanning, and 3D software. New multi-camera devices can be used to create accurate 3D models of living animals in the wild and captivity. New websites and virtual reality/augmented reality devices now enable the visualization and sharing of these data. We provide examples of these approaches for animals ranging from large whales to lizards and show applications for several areas: Natural history collections; body condition/scaling, bioinspired robotics, computational fluids dynamics (CFD), machine learning, and education. We provide two data sets to demonstrate the efficacy of CFD and machine learning approaches and conclude with a prospectus

    Winter Time Concentrations and Size Distribution of Bioaerosols in Different Residential Settings in the UK

    Get PDF
    The total concentration and size distribution of bioaerosols in three different types of housing (single room in shared accommodation [type I], single bedroom flat in three-storey building [type II] and two- or threebedroom detached houses [type III]) was assessed during the winter. This research was an extension of a previous study carried out in the summer. The measurement campaign was undertaken in winter 2008 and 30 houses were sampled. Samples were taken from kitchens, living rooms, corridors (only in housing type I) and outdoors with an Anderson 6 stage viable impactor. In housing type I, the total geometric mean concentration was highest in the corridor for both bacteria and fungi (3,171 and 1,281 CFU/m3, respectively). In type II residences, both culturable bacteria and fungi were greatest in the living rooms (3,487 and 833 CFU/m3, respectively). The living rooms in type III residences had largest number of culturable bacteria (1,361 CFU/m3) while fungi were highest in kitchens (280 CFU/m3). The concentrations of culturable bacteria and fungi were greater in mouldy houses than non-mouldy houses. A considerable variation was seen in the size distribution of culturable bacteria in type I residences compared to types II and III. For all housing types more than half of culturable bacterial and fungal aerosol were respirable (<4.7 μm) and so have the potential to penetrate into lower respiratory system. Considerable variation in concentration and size distribution within different housing types in the same geographical region highlights the impact of differences in design, construction, use and management of residential built environment on bioaerosols levels and consequent varied risk of population exposure to airborne biological agents. © Springer Science+Business Media B.V. 2012

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe
    corecore